Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(3)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36985068

RESUMO

The field of soft matter is rapidly growing and pushing the limits of conventional materials science and engineering. Soft matter refers to materials that are easily deformed by thermal fluctuations and external forces, allowing for better adaptation and interaction with the environment. This has opened up opportunities for applications such as stretchable electronics, soft robotics, and microfluidics. In particular, soft matter plays a crucial role in microfluidics, where viscous forces at the microscale pose a challenge to controlling dynamic material behavior and operating functional devices. Field-driven active colloidal systems are a promising model system for building smart functional devices, where dispersed colloidal particles can be activated and controlled by external fields such as magnetic and electric fields. This review focuses on building smart functional devices from field-driven collective patterns, specifically the dynamic structuring of hierarchically ordered structures. These structures self-organize from colloidal building blocks and exhibit reconfigurable collective patterns that can implement smart functions such as shape shifting and self-healing. The review clarifies the basic mechanisms of field-driven particle dynamic behaviors and how particle-particle interactions determine the collective patterns of dynamic structures. Finally, the review concludes by highlighting representative application areas and future directions.

2.
Chem Commun (Camb) ; 58(18): 3055-3058, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35166272

RESUMO

The interactions between biomembranes and particles are key to many applications, but the lack of controllable model systems to study them limits the progress in their research. Here, we describe how Janus polystyrene microparticles, half coated with iron, can be partially engulfed by artificial cells, namely giant vesicles, with the goals to control and investigate their adhesion and degree of encapsulation. The interaction between the Janus particles and these model cell membrane systems is mediated by electrostatic charge, offering a further mode of modulation in addition to the iron patches. The ferromagnetic particle coatings also enable manipulation and transport of the vesicles by magnetic fields.


Assuntos
Adesão Celular , Nanopartículas Multifuncionais/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Campos Magnéticos , Eletricidade Estática
3.
Soft Matter ; 17(46): 10536-10544, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34761766

RESUMO

Actively driven colloids demonstrate complex out-of-equilibrium dynamics often rivaling self-organized patterns and collective behavior observed in living systems. Recent studies revealed the emergence of steady macroscopic states with multiple interacting vortices in an unconfined environment that emerge from the coupling between microscale particle rotation and translation. Yet, insights into the microscopic behavior during the vortex emergence, growth, and formation of a multi-vortical state remain lacking. Here, we investigate in experiments and simulations how the microscale magnetic roller behavior leads to the emergence of seed vortices, their aggregation or annihilation, and the formation of stable large-scale vortical structures. We reveal that the coupling of roller-induced hydrodynamic flows guides the local self-densifications and self-organization of the micro-rollers into seed vortices. The resulting multi-vortical state is sensitive to the external magnetic field amplitude and allows tuning the rollers' number density in a vortex and its characteristic size.

4.
Lab Chip ; 21(1): 215-222, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33295921

RESUMO

Inspired by nature, active matter exemplified by self-organization of motile units into macroscopic structures holds great promise for advanced tunable materials capable of flocking, shape-shifting, and self-healing. Active particles driven by external fields have repeatedly demonstrated potential for complex self-organization and collective behavior, yet how to guide the direction of their collective motion largely remains unexplored. Here, we report a system of microscopic ferromagnetic rollers driven by an alternating magnetic field that demonstrates programmable control of the direction of a self-organized coherent vortical motion (i.e., chirality). Facilitated by a droplet confinement, the rollers get synchronized and display either right- or left-handed spontaneous vortical motion, such that their moving direction determines the vortex chirality. We reveal that one can remotely command a flock of magnetic rollers to switch or maintain its chiral state by modulating a phase shift of the sinusoidal magnetic field powering the active rollers. Building on our findings, we realize a self-assembled remotely controlled micro-pump architecture capable of switching the fluid transport direction on demand. Our studies may stimulate new design strategies for directed transport and flocking robotics at the microscale based on active colloids.

5.
Proc Natl Acad Sci U S A ; 117(18): 9706-9711, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32300010

RESUMO

Active matter, both synthetic and biological, demonstrates complex spatiotemporal self-organization and the emergence of collective behavior. A coherent rotational motion, the vortex phase, is of great interest because of its ability to orchestrate well-organized motion of self-propelled particles over large distances. However, its generation without geometrical confinement has been a challenge. Here, we show by experiments and computational modeling that concentrated magnetic rollers self-organize into multivortex states in an unconfined environment. We find that the neighboring vortices more likely occur with the opposite sense of rotation. Our studies provide insights into the mechanism for the emergence of coherent collective motion on the macroscale from the coupling between microscale rotation and translation of individual active elements. These results may stimulate design strategies for self-assembled dynamic materials and microrobotics.

6.
Sci Adv ; 6(12): eaaz8535, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32219171

RESUMO

Ensembles of actuated colloids are excellent model systems to explore emergent out-of-equilibrium structures, complex collective dynamics, and design rules for the next generation materials. Here, we demonstrate that ferromagnetic microparticles suspended at an air-water interface and energized by an external rotating magnetic field spontaneously form dynamic ensembles of synchronized spinners in a certain range of the excitation field parameters. Each spinner generates strong hydrodynamic flows, and collective interactions of the multiple spinners promote a formation of dynamic lattices. On the basis of experiments and simulations, we reveal structural transitions from liquid to nearly crystalline states in this novel active spinner material and demonstrate that dynamic spinner lattices are reconfigurable, capable of self-healing behavior and that the transport of embedded inert cargo particles can be remotely tuned by the parameters of the external excitation field. Our findings provide insights into the behavior of active spinner materials with reconfigurable structural order and tunable functionalities.

7.
Langmuir ; 36(25): 7148-7154, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32011137

RESUMO

Miniaturized devices capable of active swimming at low Reynolds numbers are of fundamental importance and possess potential biomedical utility. The design of colloidal microswimmers requires not only miniaturizing reconfigurable structures but also understanding their interactions with media at low Reynolds numbers. We investigate the dynamics of "microscallops" made of asymmetric magnetic cubes, which are assembled and actuated using magnetic fields. One approach to achieving directional propulsion is to break the symmetry of the viscous forces by coupling the reciprocal motions of such microswimmers with the nonlinear rheology inherent in non-Newtonian fluids. When placed in shear-thinning fluids, the local viscosity gradient resulting from nonuniform shear stresses exerted by time-asymmetric strokes of the microscallops generates propulsive thrust through an effect we term "self-viscophoresis". Surprisingly, we found that the direction of propulsion changes with the size and structure of these assemblies. We analyze the origins of their directional propulsion and explain the variable propulsion direction in terms of multiple counterbalancing domains of shear dissipation around the microscale structures. The principles governing the locomotion of these microswimmers may be extended to other reconfigurable microbots assembled from colloidal-scale units.

8.
Nat Commun ; 9(1): 1791, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29725005

RESUMO

Locally energized particles form the basis for emerging classes of active matter. The design of active particles has led to their controlled locomotion and assembly. The next generation of particles should demonstrate robust control over their active assembly, disassembly, and reconfiguration. Here we introduce a class of semiconductor microparticles that can be comprehensively designed (in size, shape, electric polarizability, and patterned coatings) using standard microfabrication tools. These custom silicon particles draw energy from external electric fields to actively propel, while interacting hydrodynamically, and sequentially assemble and disassemble on demand. We show that a number of electrokinetic effects, such as dielectrophoresis, induced charge electrophoresis, and diode propulsion, can selectively power the microparticle motions and interactions. The ability to achieve on-demand locomotion, tractable fluid flows, synchronized motility, and reversible assembly using engineered silicon microparticles may enable advanced applications that include remotely powered microsensors, artificial muscles, reconfigurable neural networks and computational systems.

9.
Sci Adv ; 3(8): e1701108, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28798960

RESUMO

Colloidal-scale assemblies that reconfigure on demand may serve as the next generation of soft "microbots," artificial muscles, and other biomimetic devices. This requires the precise arrangement of particles into structures that are preprogrammed to reversibly change shape when actuated by external fields. The design and making of colloidal-scale assemblies with encoded directional particle-particle interactions remain a major challenge. We show how assemblies of metallodielectric patchy microcubes can be engineered to store energy through magnetic polarization and release it on demand by microscale reconfiguration. The dynamic pattern of folding and reconfiguration of the chain-like assemblies can be encoded in the sequence of the cube orientation. The residual polarization of the metallic facets on the microcubes leads to local interactions between the neighboring particles, which is directed by the conformational restrictions of their shape after harvesting energy from external magnetic fields. These structures can also be directionally moved, steered, and maneuvered by global forces from external magnetic fields. We illustrate these capabilities by examples of assemblies of specific sequences that can be actuated, reoriented, and spatially maneuvered to perform microscale operations such as capturing and transporting live cells, acting as prototypes of microbots, micromixers, and other active microstructures.


Assuntos
Materiais Biomiméticos , Coloides , Campos Magnéticos , Modelos Teóricos , Algoritmos , Coloides/química
10.
J Am Chem Soc ; 138(45): 14948-14953, 2016 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-27775335

RESUMO

Janus and patchy particles are emerging as models for studying complex directed assembly patterns and as precursors of new structured materials and composites. Here we show how lipid-induced capillary bridging could serve as a new and nonconventional method of assembling patchy particles into ordered structures. Iron oxide surface patches on latex microspheres were selectively wetted with liquid lipid, driving the particle assembly into two- and three-dimensional clusters via interparticle capillary bridge formation. The liquid phase of the bridges allows local reorganization of the particles within the clusters and assists in forming true equilibrium configurations. The temperature-driven fluid-to-gel and gel-to-fluid phase transitions of the fatty acids within the bridge act as a thermal switch for cluster assembly and disassembly. By complementing the experiments with Monte Carlo simulations, we show that the equilibrium cluster morphology is determined by the patch characteristics, namely, their size, number, and shape. This study demonstrates the ability of capillary bridging as a versatile tool to assemble thermoresponsive clusters and aggregates. This method of binding particles is simple, robust, and generic and can be extended further to assemble particles with nonspherical shapes and complex surface chemistries enabling the formation of sophisticated colloidal molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...